<t
N
c:::-
-
<~
—
—
Lo
D
>
e

Form Approved

REPORT DOCUMENTATION PAGE" | Gva v ovorcres

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Qperations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED //16/94
January 95 Semi-annual 1/15/95
4. TITLE AND SUBTITLE - , -, 5. FUNDING NUMBERS
1. Fault Tolerant Features and Experiment of ANTS distri- G

buted real-time system :
2. ANTS: ﬁn apgrgggh for High-Performance and Ultra-

B AUTHOR(S) —Cronooot=tey '
P. Dominic-Savio, J.C. Lo and D. W. Tufts

N 00014-94-1-0479

7, PERFORMING ORGANIZATION NAME(S& AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Electrical & Computer Engineering REPORT NUMBER

University of Rhode Island
Kingston, RI 02881-0805

DTIC .

9. SPONSORING/ MONITORING AGENCY NAME(S) AN
Office of Naval Research

Ballston Tower One

800 North Quincy St.

Arlington, VA 22217-5680

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

This report contains two papers. Paper (1) has been submitted to FICS-25 and
paper (2) has been submitted to IPDS '95.

122, DISTRIBUTION / AVAILABILITY STATEMENT - 12b. DISTRIBUTION CODE
W
Approved for publie relecon
Distribation Unlintted

13. ABSTRACT (Maximum 200 words) .
The ANTS project at the University of Rhode Island introduces the concept of Active

Nodal Task Seeking (ANTS) as a way to efficiently design and implement dependable, high-
performance, distributed computing. This paper presents the fault tolerant design features
that have been incorporated in the ANTS experimental system implementation. The results
of performance evaluations and fault injection experiments are reported. The fault-tolerant
version of ANTS categorizes all computing nodes into three groups. They are: the up-and-
running green group, the self-diagnosing yellow group and the failed red group. Each available
computing node will be placed in the yellow group periodically for a routine diagnosis. In
addition, for long-life missions, ANTS uses a monitoring scheme to identify faulty computing
nodes. In this monitoring scheme, the communication pattern of each computing node is

monitored by two other nodes. DTIC QUALITY INCPECTED 3
14. SUBJECT TERMS 15. NUMBER OF PAGES
Dependable distributed system, real-time system, active mode 40
operating system, high performance distributed computing 16. PRICE CODE !
i
17 SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE - OF ABSTRACT :
Unclassified . Unclassified Unclassified UL
NSN 7540-01-280-5500 < . ' Standard Form 298 (Rev. 2-89)

gr.gsc.r_ubed by ANSI Std. 239-18

Fault Tolerant Features and Experiments of
ANTS Distributed Real-Time System

Patrick Dominic-Savio, Jien-Chung Lo and Donald W. Tufts
Department of Electrical and Computer Engineering
The University of Rhode Island
Kingston, RI 02881-0805

Abstract

The ANTS project at the University of Rhode Island introduces the concept of Active
Nodal Task Seeking (ANTS) as a way to efficiently design and implement dependable, high-
performance, distributed computing. This paper presents the fault tolerant design features
that have been incorporated in the ANTS experimental system implementation. The results
of performance evaluations and fault injection experiments are reported. The fault-tolerant
version of ANTS categorizes all computing nodes into three groups. They are: the up-and-
running green group, the self-diagnosing yellow group and the failed red group. Each available
computing node will be placed in the yellow group periodically for a routine diagnosis. In
addition, for long-life missions, ANTS uses a monitoring scheme to identify faulty computing
nodes. In this monitoring scheme, the communication pattern of each computing node is
monitored by two other nodes.

* Jien-Chung Lo is the contact author.
Tel: (401) 792-2505

FAX: (401) 782-6422

Email: jcl@ele.uri.edu

Keywords: distributed computing, MTTF, highly available systems, fault-tolerant dis-
tributed operating system, real-time systems.

This work is supported by the Office of Naval Research under contract N0014-94-1-0479.

1 Introduction

The ANTS project at the University of Rhode Island explores and evaluates the concept
of Active Nodal Task Seeking (ANTS) as a way to efficiently design and implement de-
pendable, high-performance, distributed computing. Real-time radar, active sonar, and
electronic warfare systems are examples of systems which require ultra-dependability and
high performance. Distributed systems are potentially dependable since there are built-in
redundancies. Many fault-tolerant distributed system designs have been proposed, and some
prototypes have been built. However, we would like to point out that none of these existing
systems, both theoretical and experimental, can efficiently achieve both high-performance
and ultra-dependability at the same time. For the above applications, a real-time require-
ment is also important. We need to guarantee that sufficient computational power will be
available, even in the presence of component failures, and can be allocated to complete all
high priority tasks within the real-time deadlines. The only direct predecessor for ANTS is
the Safeguard multiprocessor system [1].

Distributed systems are inherently fault-tolerant to failures of individual components.
However, utilizing this intrinsic fault tolerance is not a straightforward task. Dependable
distributed systems still need special hardware or software designs to achieve the desired level
of dependability. The Advanced Architecture On-board Processor by Harris Corporation
[2, 3] uses self-checking RISC processors and a chordal ring. The Advanced Automation
System by IBM [4, 5] needs redundant components in each subsystem due to the nature of
its wide area distribution. The on-board computer of the Japanese satellite Hiten [6] uses
stepwise negotiating voting, which is a combination of mutual checking by data comparison
and self-checking. In some cases, software redundancy is used. For instance, Delta-4 [7] uses
active replication of software programs to ensure fault tolerance. A similar strategy is used
in Manetho [8], where each application process is replicated by a set.

We have proposed previously a novel locally active distributed system to efficiently design
and implement dependable, real-time signal processing for detection and localization in active
sonar and radar [9]. We called this distributed computing concept Active Nodal Task Seeking
(ANTS). The fault tolerance mechanisms are built-in at the ANTS kernel level. We report in

this paper the fault-tolerant features and the first implementation of ANTS system. ‘We also -

report here the results from fault injection experiments. We demonstrate that the ANTS

system can achieve our dependability goal, an extremely long MTTF, without significant

aveil angfop
’ Speeial .

71

loss of performance.

2 An Overview of ANTS Distributed Real-Time Sys-
tem

In an ANTS system, an idle computing node will seek out the information it needs about
pending, high priority work from partly prescribed, partly updated task tables, instead of
waiting for other computing nodes to send it a job to do. Naturally, predecessor/successor
conditions like those in a data flow architecture must be checked by the node. The advantage
of this concept is that a true distributed system is guaranteed. All programs, including
operating system, applications, and monitoring or diagnostic programs, can be executed
distributively. A failed computing node will not influence the system performance as long
as the n+1 redundancy policy is enforced, i.e. the number of available computing nodes is

always one greater than the number of required computing nodes.

2.1 General Attributes

There is no need for special hardware design to ensure the dependability of an ANTS system
except perhaps in its internode communication network. However, some extra work by the
programmer and/or an unconventional compiler is needed on a one-time basis, before the
compiled program can be executed on ANTS. Some other attributes of ANTS are as follows
[9): |
e On-line error checking is simple and straightforward. The two extreme failure modes:
fail-silent and fail-uncontrolled [7] are easily detected since the failed computing node -

will not be actively seeking a new task.
e Fault tolerance can be attained without seriously degrading the system performance.

e There is no need for synchronization of computing nodes or programs. Since every
computing node is an active unit, the ANTS system is an asynchronous system. The
asynchronous nature of the operation also allows an easy implementation of recover

from failure process.

A high-performance distributed computing system is not necessarily a good real-time

system. Studies have shown that only 50% of the nodes, on average, in a distributed system

2

are busy at any given time [10]. This is a serious drawback if the systembis to be used in
real-time applications. Clearly, the effort to guarantee a higher computing node utilization
can also help to enhance the success of real-time executions. In ANTS, the needed programs
will be first carefully partitioned and compiled such that each segment of sub-program (task)
contains only continuous executable codes with a fixed limitation on execution time. This
one-time effort is worthwhile since no run-time scheduling or task assignment will be needed

later.

2.2 The Implementation of ANTS

The first implemeﬁtation of ANTS is carried out in a configuration as shown in Figure
1. The computing nodes in this case are Sun workstations, and the communication bus
is an Ethernet. Of course, ANTS can be implemented on any type of parallel processing
configurations. The choice of this particular system organization is due to the availability of
hardware facilities.

The ANTS kernel is built on top of the SUN OS and the TCP/IP [11] communication
protocol. A detailed view is shown in Figure 2. There are four major modules in the
ANTS kernel: System Manager, Fault Tolerance Monitor, Task Scheduler, and Inter Node
Communication Control. The ANTS kernel controls the activities at each node. For this

paper, we shall concentrate more on the System Manager and the Fault Tolerance Monitor.

3 Fault Tolerant Features

The fault tolerant features reported here are those implemented at the ANTS kernel level for
the experiments. Data manipulation errors are not detected by the fault tolerant techniques
described here. They are detected by concurrent error detecting techniques to be imple-
mented at the task level. For instance, in a high availability application, reasonableness
checking on the computed results can be easily imposed. For high reliability applications,

duplicated or triplicated tasks can be used.

3.1 Run Time Partitioning N AL TR TSNP e & I PRCRREPES

During run time ANT nodes are partitioned into three groups: the up-and-running green

group, the stop-and-checking yellow group and the red group for discarded faulty nodes. The

number of computing nodes allocated for the green group must always be greater than the
minimum requirement at any given time. The rest of the computing nodes are then in the
yellow group unless they have been found to fail, in which case they are removed to the red
group. The grouping is based on the status of the computing nodes. Therefore, there is no
visible physical grouping, and no need for special hardware design for switching between the
two run-time groups.

There are two ways that an ANT node may be moved from the green group to the yellow
group: (1) when it is time for a routine self diagnosis, or (2) when a node has been identified
as faulty. Since each ANT node seeks its own work for itself, placing an ANT node in the
yellow group is accomplished by making the diagnostic program the highest priority task for
it through a timer. An ANT node may be moved from the yellow group to the green group
if the diagnosis result proves fault-free.

All faulty nodes are placed in the red group. When no manual repair is available, the
nodes will be indefinitely remained in the red group. A node in the red group can be moved

back to the green group only if it has been repaired.

3.2 Concurrent Error Detection

Since each ANT node has an active role in seeking out work, malicious failures, such as
fail-silent or fail-uncontrolled [7], are easy to identify. A fail-silent or fail-uncontrolled ANT
node will not ask for a job for an extensive period of time. The concurrent error detection
at the ANTS kernel level is based on bus eavesdropping. This requires a communication in-
terconnection system where broadcast is cheap. Ethernet based networks are ideal examples
of such an interconnection medium.

If a failure occurs after a new job has been acquired, then the ANT node will not report
a completion of the task within a reasonable time. For easy real-time scheduling as well as
concurrent error detection, we partition job into tasks such that each task can be completed
within a fixed time frame. Therefore, time-out detection can be used as the first layer of
concurrent error detection mechanism.

At the ANTS kernel level, we implement a monitor scheme, ANTS Fault detection and

Recovery Protocol (AFDRP), that is similar to that proposed .in.[12].. . Each. ANT node «..

monitors its two neighboring nodes. Conversely, each ANT node is monitored by its two

neighboring nodes. All ANT nodes are assigned with node addresses. These addresses are

used in run time to determine the neighboring nodes.

For the case shown in Figure 4, let us consider node M. Each time M receives a message
from H or L indicating that they are taking up a task for execution M updates its Last
Activity record for that node. This forms one phase of the protocol. Each time node M
finishes executing a task it enters the Verification cycle, as shown in Figure 5. Every node in
the system runs a verification cycle to verify the correct operation of its upstream neighbor
(H in this example). The verification cycle begins by checking if the node under test has
been silent for more than a predefined timeout factor. If this is not the case then node H
passes the test and M exits the verification cycle. If node M finds that node H has remained
silent for more than the timeout factor, it proceeds with the Confirmation Cycle.

The confirmation cycle begins with node M communicating with the other node moni-
toring H (which is H2 in this example), requesting a verification of the activity of node H.
When H2 receives this request it looks up its database and sends back a reply to node M.
The reply consists of a Concur or Differ message depending on the activity report of node H
at H2. On receiving a Concur reply from node H2, M enters the Recover and Restart (R&R)
cycle, as shown in Figure 6. Figure 7 shows a more detailed flowchart of the removal of faulty
node. The confirmation cycle effectively prevents faulty nodes from removing operational
nodes from the network.

Beside the above protocol, other checking functions such as periodic self-diagnosis, mem-
ory parity checks, cyclic redundancy checks on inter node messages and hardware integrity
checking can also be selectively done depending on the available resources. Detection of any

faults during these checks also triggers the recovery and restart cycle.

3.3 Recovery and Re-Enlistment

Once the concurrent error detection mechanism successfully detects a fault, it triggers the
recovery and restart (R&R) cycle. The first step in the R&R cycle consists of M, as in
previous example shown in Figure 4, broadcasting a Remove From Net (RFN) message
for node H. ANT nodes that receive this message enter different recovery modes based on
their logical position (ANTS Address) in the network. If node H is partially functioning
thorough test of itself. If the RFN message is received by a node that is monitoring the node

that is being removed, the node resets itself to monitor its new neighbor.

All the ANT nodes modify their System Information Block (SIB) to reflect the removal
of the node in question. The next step in the R&R step consists of re-enlistment, this step
is carried out only if a functional ANT node is available from the yellow group. If an ANT
node S is available, node M brings it on-line by first allotting it the address of the removed
node and proceeds to initialize the new node by providing it with the current Task List and
other system parameters. Once on-line, node S starts normal execution which includes the
monitoring of its adjacent neighbors. While providing the new node with the Task List, node
M inserts the task that failed to complete on node H on top of the list, this effectively results
in the task being restarted on node S. This marks the completion of the Recover and Restart
cycle and the system returns to a normal state. If additional ANT node is not available,
node M skips the reenlistment cycle and simply restarts the aborted task itself.

Since intermittent and transient failures occur more frequently during run-time [13],
especially in modern VLSI-based systems [14], there is no need to remove a component once
a failure has been recorded. The record keeps at each ANT node will indicate the number
and frequency of failure history. If an ANT node fails frequently, it will be removed from
the system to the red group. This situation may be induced by either of the following
scenarios: the node is on the brink of a permanent failure and thus the increasing frequency
of transient failure occurrences; or the failure is undetectable by the diagnostic program. It
is impossible to design a diagnostic program with a 100% realistic failure coverage, although

it may guarantee a 100% coverage on modeled failures.

3.4 Error Handling Capability

The monitoring scheme discussed above not only detect single isolated faulty nodes but
multiple faulty nodes as well. In the following we shall use examples to demonstrate the
detection of multiple node failures.

For the isolated node failures shown in Figure 8, the AFDRP has no trouble in detecting
them. For each failed node, the two nodes that perform the monitoring are both fault-free.
The communication can be established for the verification cycle and proceed directly to the
R&R cycle.

Consider the multiple (chained) node failures case shown in Figure & where nodes 2 and...:
3 are faulty. Node 1 discovers the fault in node 2 during the Verification cycle and requests

confirmation from node 3. While requesting confirmation from node 3, node 1 starts a timer

and if it does not receive a reply from node 3 before the timer expires it proceeds to run
a verification of node 3 by requesting a status report of node 3 from node 4 and the cycle
continues.

Based on the assumptions made previously, we can see that in this example node 1 will
not receive a valid reply within the timeout period and node 4 will concur with node 1 about
the failure of node 3. Now node 1 begins the R&R cycle. This verification process can
be extended to handle as many Chained or Multiple Consecutive Faults as necessary. By
extending the above two cases it is seen that any combination of the above two cases will be
successfully handled by the protocol. It is also seen that this combination covers all possible
fault patterns. ’

The main advantage of the above scheme is that the monitoring of nodes and the fault
detection process add no additional traffic over the communication network. The protocols
function by monitoring other system communication messages and hence fault tolerance is

achieved at the least communication expense.

4 The ANTS System Manager and Task Scheduler

In this section, we provide a brief description of the ANTS system manager (ANTS-SM)and

task scheduler.

4.1 Contention Resolution in Task Scheduler

The distributed task scheduler at each computing node select the next task to be executed
from its own copy of task list. Because of the communication delay, it is possible that
several computing nodes may select the same task to be executed near simultaneously. If -
such scenario occurs, the task scheduler will receive message from other computing nodes
stating the the task has been selected for execution at other nodes. As shown in Figure 7,
the timestamps indicating the time the task is selected are compared. The computing node
with a higher number in the timestamp will abandon the execution and will proceed to select
another task from the task list.

This simple mechanism has been shown to be effective during experimental runs. It is

also quite efficient since only very little overhead in comparing the timestamps is needed.

4.2 Synchronization and the System Clock

In ANTS there is no need for highly synchronized clock mechanisms. The ANTS nodes
run in loose synchronization, the only need for a synchronized clock in ANTS arises when
timestamps have to be generated. The ANTS Task scheduler is designed such that even for
the timestamps a high degree of synchronization is not required.

Based on these requirements the ANT-SM maintains a simple clock that counts in mil-
liseconds. The clock is initialized during start up and is periodically checked at long intervals
with neighboring nodes to trap possible erroneous values (this is done as part of the con-
current error detection mechanism at the kernel level). Other than this the precision of the
system clocks is such that it does not need to be adjusted for periods far exceeding the

system uptime.

4.3 ANTS Address Resolution and Initialization Protocol

This protocol is concerned with the process of initiating the entrance of a node into the
green group. First the node that intends to enter the network randomly picks a slot from
the list of valid ANTS addresses, it then broadcasts a query with the chosen ANTS address
as part of the message. There are two possible outcomes of the query, first the requested
ANTS slot may be vacant in which case one of the nodes in the network, i.e., the one with
the next higher ANTS address assigns itself the task of initiating the incoming node into
the network. The task of initialization includes the transfer of the current task table and
the System Information Base. Also if the fault tolerance feature is enabled the neighboring
monitoring nodes reassign themselves to monitor the new node. The monitoring mechanism
in the new node becomes active and starts monitoring its adjacent nodes.

If the selected ANTS address posted in the query clashed with that of an ANTS node
that is already in the network then that node by default becomes the initiator. This node
refers to its SIB and picks a valid ANTS address that is not in use and assigns it to the
incoming node. Also, as in the previous case the initiating node transfers all the necessary

information to the new node.

4.4 Debugging and System Diagnosis Features

The ANT-SM also provides a run time window display of the functioning of the system.
Some of the data that is displayed includes the first 10 tasks on the task list, the currently
executing task, the status of INC and the list of active nodes in the system. The display
basically provides continuous status information of the running system besides Showing some
cumulative data such as the total traffic over the communication network and number of tasks
executed. |

The other necessary system functions in the prototype are handled by the host operating
system the ANTS kernel is running on. In future versions it would be advantageous to
completely eliminate the host operating system interface to the hardware and implement

the required features taking into account the requirements of the ANTS system.

5 Experimental Results

The ANTS prototype was tested on Sun Sparc workstations running Sun OS. The ANTS
communication mechanism was layered on top of the Internet Protocols and the intercom-
munication network used was an Ethernet LAN running at 10 Mbits per second. The ANTS
code was written in C++ and compiled using the GNU C++ compiler. The test application
program was emulated using timing loops and an inter task data transfer size of 1.5KB was
assumed. Predecessor and successor relationships of tasks are either generated randomly or
are assumed to resemble that of the FFT computation. In addition, some randomly gener-
ated tasks with randomly generated data dependency relationships are also used. Due to
the limitation in the number of available nodes, the test runs were limited to a maximum
of nine nodes. Tests were done for three different Task Slice Time factors and a comparison
of performance with and without fault tolerance was also made to study the performance

trade off implications of using the ANTS Integrity Maintenance Protocols.

5.1 Fault Tolerant Features Verifications

The concurrent error detecting mechanism and other integrity maintenance protocols were
tested using simulated faults. The tests included cutting off the power supply to nodes or
to parts of the hardware, intentional triggering of faults by transmission of invalid data over

the bus and simulation of memory parity errors. Isolated and multiple faults were simulated

9

to fully test the correctness of the monitoring scheme. The observed results conformed to
the specified requirements in that each fault free node reaches an accurate diagnosis of the
fault conditions of the remaining nodes, without any restriction being placed on the number
of faulty nodes or fault patterns.

The fault tolerant mechanism always correctly reconfigured the network in all the test
cases. Under extreme load conditions, it took the ANTS system (with 9 nodes) a maximum
time of one minute to reconfigure itself to a stable state. Under nominal conditions of load
and faults the mean reconfiguration time was about 10 seconds. The reconfiguration time is
the time interval between the occurring of a fault and the time the network becomes fully
operational again, i.e., the faulty nodes have been moved to the yellow group and available
ANT nodes at the yellow group are re-enlisted to the green group. The reconfiguration time
is related to the number of faults occurring at the same time and to the communication
network latency.

Tables 1 and 2 show the typical reconfiguration times observed for the isolated faults and
chained faults cases, respectively. The rather irregular variations in the reconfiguration time
is due to the fact that, the monitoring protocols share the communication bus with the rest
of the system. In such a situation the reconfiguration time is affected to a large extent by
the application tasks that are running. The number of simultaneous or near simultaneous
faults were limited to 6 in all the test cases. With more than 6 simultaneous faults and at
high load levels the communication bottleneck was found to cause the system to become

unpredictable.

5.2 ANTS Performance without Fault Tolerant Features

Figure 9 shows the performance figures obtained from the test results. During these test runs,
the AFDRP or the Fault Tolerance Monitor is disabled. The modulation in programming
ensures that these results are obtained with no interference from the disabled modules. The

following inferences can be drawn from the results:

o First, as is to be expected the speed up factor is not linear. The speedup obtained
gradually decreases with the addition of more nodes. The decrease in speed up is more
pronounced with an increase in the number of nodes beyond 6. This effect is due to
the traffic bottleneck imposed by the single communication channel. Addition of more

communication channels or an increase in bandwidth of the communication media is

10

necessary to achieve a better performance with more nodes in the system.

e Another noticeable aspect of the performance figures is the higher linearity in speed up
with higher Time Slice factors, i.e., task execution time. This is evidently due to the
fact that less overhead is involved with larger task fragments. The time slice factor will
however have to be limited to a reasonable value to facilitate faster trapping of faulty
nodes If the time slice factor were to be too large, a faulty node could unrecoverably

damage the cooperative processing environment of the ANT system.

e A third prominent feature is that with a large number of nodes in the system the
speed up tapers of to an almost constant value. This value is a function of the total
available bandwidth of the communication medium. This compares well with other
distributed computing systems where beyond a certain point the speed up curve inverts
and results in worsening performance [15]. This is due to the fact that with more nodes
there are more messages that contend for the communication medium. In ANTS the

communication traffic is not adversely affected by the number of nodes in the system.

We also observe that the average communication delay is about 200 to 250ms. There is
a strong relationship between the average task execution time, the average communication
delay, and the speed up factor. Of course, when a high speed network is available, a shorter

task execution time can be used.

5.3 ANTS Performance with Built-In Fault Tolerant Features

We then record the performance figures of ANTS with AFDRP enabled. The test run
results are shown in Figure 10. Fig 10 clearly shows that one of the major design goals
has been achieved. The ANTS is designed to exploit the inherent fault tolerant features of
the distributed system. We expect that a successful implementation of ANTS should have
a minimum impact on the system performance. Test runs yielded a figure of 5% for the
performance degradation due to the addition of fault tolerance. We believe that this low
figure is a strong evidence to support that the inherent fault tolerance has been well utilized.

We have shown previously in [9] that an ANTS system can achieve an extremely long
MTTF. Part of this MTTF improvement is due to the re-enlistment of ANT nodes with

transient type failures. We note that the ratio of transient faults to all faults depends to

a large extent on environmental conditions. In a documented case [6], the transient faults
account for 20% to 33% in low earth orbit conditions.

This clearly brings out the effectiveness of the recovery process of the ANTS fault tolerant
mechanism. The penalty paid for obtaining such an improvement in MTTF is a minimal
trade-off in performance, as shown in Fig 7. The loss of performance is a function of the
number of nodes in the system and the mean performance degradation with 4 and 8 nodes
was 2% and 5%, respectively. This is relatively small compared to the magnitude by which

the recovery and re-enlistment process extends the useful life of the system.

6 Conclusions

We have piesented in this paper the first implementation of ANTS dependable, distributed,
real-time system. Experimental results shows that the fault tolerant features built-in to
the ANTS kernel function properly. Furthermore, the built-in fault-tolerant features have
a relatively little impact on the overall system performance. The ANTS has been designed
as a high availability system with an extremely long MTTF [9]. The results shown in this
paper also indicate that ANTS can achieve high performance by fully utilizing the useful
computing resources.

Finally, we remark here that ANTS is an adaptable system. The fault-tolerant features
reported here are those implemented at the kernel level. For different mission type, other
error checking schemes can be implemented at the task level, such as reasonableness checking,

duplication, or triplication of tasks.

References

[1] AT&T, “Safeguard supplement,” The Bell System Tech. J., 1975.

[2] M. J. Tacoponi and D. K. Vail, “The fault tolerance approach of the advanced architec-
ture on-board processor,” in Proc. 19th Int’l Symp. Fault-Tolerant Comput., pp. 6-12,
June 1989.

[3] M. J. Tacoponi and S. F. McDonald, “Distributed reconfiguration and recovery in the
advanced architecture on-board processor,” in Proc. 21st Int’l Symp. Fauli-Tolerant
Comput., pp. 436—443, June 1991. :

[4] F. Cristian, B. Dancey, and J. Dehn, “Fault-tolerant in the advanced automation sys-
tem,” in Proc. 20th Int’l Symp. Fault-Tolerant Computing, pp. 6-17, June 1990.

12

[5] T. R. Dilenno, D. A. Yaskin, and J. H. Barton, “Fault-tolerant testing in the advanced
automation system,” in Proc. 21st Int’l Symp. Fault-Tolerant Comput., pp. 18-25, June
1991.

[6] T. Takano, T.Yamada, K. Shutoh, and N. Kanekawa, “Fault-tolerant experiments of the
"Hiten” onboard space computer,” in Proc. 21st Int’l Symp. Fault-Tolerant Comput.,
pp. 26-33, June 1991.

[7] M. Chereque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron, “Active replication in
Delta-4,” in Proc. 22nd Int’l. Symp. Fault-Tolerant Comput., pp. 28-37, July 1992.

[8] E. N. Elnozahy and W. Zwaenepoel, “Replicated distributed processes in Manetho,” in
Proc. 22nd Int’l Symp. Fault-Tolerant Computing, pp. 18-27, July 1992.

[9] J. C. Lo, D. W. Tufts, and J. W. Cooley, “Active Nodal Task Seeking (ANTS): an
approach to high-performance, ultra-dependable computing,” to appear in IEEFE Trans.
Aerospace and Electronic Syst., 1995.

[10] Z. M. Wojcik and B. E. Wojcik, “Rough grammar for efficient and fault-tolerant com-
puting on a distributed system,” IEEE Trans. Software Eng., vol. 17, pp. 652-668, July
1991.

[11] D. E. Comer and D. L. Stevens, Internetworking with TCP/IP, vol. 1. Prentice-Hall,
NJ, 1988.

[12] R. P. Bianchini and R. W. Bﬁskens, “Implementation of on-line distributed system-level
diagnosis theory,” IEEE Trans. Comput., vol. 41, pp. 616-626, May 1992.

[13] J. R. Sklaroff, “Redundancy management technique for space shuttle computers,” IBM
I. Res. Develop., pp. 2027, January 1976.

[14] Y. Savaria, N. C. Rumin, J. F. Hayes, and V. K. Agarwal, “Soft-error filtering: A
solution to the reliability problem of future VLSI digital circuits,” Proc. IEEE, vol. 74,
pp. 669-683, May 1984.

[15] W. W. Chuy, L. J. Holloway, M. T. Lan, and K. Efe, “Task allocation in distributed data
processing,” IEEE Computer, pp. 57-69, November 1980.

Table 1: Reconfiguration times for multiple isolated faults

Number of Reconfiguration
Isolated Faults | Time(in Seconds)
1 2
2 3
3 3
4 4
S 4
6 5

Table 2: Reconfiguration times for multiple chained faults

Number of Reconfiguration
Isolated Faults | Time(in Seconds)
1 N/A
2 5
3 15
4 17
5 21
6 28
NODE 1 NODE 2 eoe
@ @ Cg}AMUNICATION BUS ‘ >

Figure 1: Architecture of the ANTS experimental system.

f)
SYSTEM MANAGER | sySteM INFORMATION
BLOCK
APPLICATION
TASK
SPACE FREE MEMORY
TASK SCHEDULER FAULT TOLERANCE
MONITOR
TASK LIS FAULT HISTORY
RECOVERY CONTROL
INTER NODE COMMUNICATION
COMMUNICATION
A NROL MEDIA PARAMETERS
< COMMUNICATION BUS >

Figure 2: The ANTS kernel.

Fault detection

" or
Re-enlistment periodic disgnosis

Figure 3: Run time partitioning of a fault tolerant ANTS system.

9

Figure 4: Monitoring for faulty ANT nodes.

Update Verification
Cycle cycle

Last_Activity
= Current_time

>

/ Set Verification *
; Flag

Request
Verification of
Node_under_test

Last_Activity
- Current_time

> NODE_TIMEOUT

Broadcast request
for activity report \
of Node_under_test \
A3
\
A}
* Request Verification
. for Node_under_test .
Set timer Rty J.”

, e~
Retum

Figure 5: AFDRP: Update and Verify cycles.

Incoming Report

Reset Timer

N
Emror Confimed
""""""" Node OK Locally check
Add Node_under_test Node_under_test
to list of noeds again
1o be removed
l Node not OK
Broadcast removal i
: Broadcast system
of Node(s) error and perform
; diagnosis
Reconfigure h <The above state cannot
the neﬁ,f,uom I Y be reached under nomal
- E operating conditions>
Reset Verify Flag
Recover and Resart

Cycle
Return

Figure 6: AFDRP: Recovery and Restart cycles.

17

Node: Start st s
R heoing
message

Task scheduler
message ?

Initialize node

Task available
in Task List

Message is
*Task Taken®

Get task from
Task List
Taken task
same as currently
executing task
Broadcast message
© "Task Taken"
Resolve contention
using timestamps

Store process id
of task in SIB

Abort current
ExecuteTask [<-~-—-=~<

——» FflowofControl | = gro=-=-=c-sssoTesssssmemsos H
—==---2> Signal '

Figure 7: Contention Resolution in ANTS Task Scheduler.

Handling multiple isolated node failures Handling multiple chained node failures

FAULTY NODE — SUCCESSFUL COMMUNICATION

(O FULLY OPERATIONAL NODE ---+ FAILED COMMUNICATION

Figure 8: Detection of multiple isolated and chained ANT nodes failures.

Speed up

10

_ — ~
Execution fime of single task:
R 100ms - 50 ms
----- 250 ms
B 800 ms
- _/

Number of nodes

Figure 9: Speed up factors of ANTS with fault tolerant features disabled.

Speed up

10

Execution time of single task: 800ms

Performance with AFDRP disabled

Y Performance with AFDRP enabled

Number of nodes

Figure 10: Trade-off in ANTS performance with fault tolerance features.

ANTS: An Approach for High-Performance and
Ultra-Dependability
in the Distributed Computing Environment

Patrick Dominic-Savio, Jien-Chung Lo and Donald W. Tufts
Department of Electrical and Computer Engineering
The University of Rhode Island
Kingston, RI 02881-0805

Abstract

We have previously proposed the Active Nodal Task Seeking (ANTS) concept as as a way
to efficiently design and implement dependable, high-performance, distributed computing.
The ANTS concept uses a completely decentralized approach in which each computing node
is an active member of the system. This not only avoids the possible critical region in favor of
a dependable computing, but also provides an adaptable, distributed resource management
that explores the full potential in computational power of the system. This paper also
provides experimental runs statistics showing the efficiency and effectiveness of the ANTS
approach.

Kéywords: distributed computing, MTTF, highly available systems, fault-tolerant dis-
tributed operating system, real-time systems.

This work is supported by the Office of Naval Research under contract N0014-94-1-0479.

1 Introduction

Distributed computing is potentially since there are built-in redundancies and that the pro-
cessing units are distributed. However, we would like to point out that none of these existing
systems, both theoretical and experimental, can efficiently achieve both high-performance
and ultra-dependability at the same time [1, 2, 3, 4, 5, 6, 7). There are numerous reasons,
but, the one we believe is the main cause is that most known distributed systems are not
really distributed. By this we mean that there is always an implied relationship between
active processing units and passive processing units. This active/passive relationship gives
rise to the load balancing problem [8]. Further, the dependability of the system is affected
since the active units are also critical units. '

Distributed systems are inherently fault-tolerant to failures of individual components.
However, utilizing this intrinsic fault tolerance is not a straightforward task. Dependable
distributed systems still need special hardware or software designs to achieve the desired level
of dependability. The Advanced Architecture On-board Processor by Harris Corporation
[1, 2] uses self-checking RISC processors and a chordal ring. The Advanced Automation
System by IBM [3, 4] needs redundant components in each subsystem due to the nature of
its wide area distribution. The on-board computer of the Japanese satellite Hiten {5] uses
stepwise negotiating voting, which is a combination of mutual checking by data comparison
and self-checking. In some cases, software redundancy is used. For instance, Delta-4 [6] uses
active replication of software programs to ensure fault tolerance. A similar strategy is used
in Manetho [7], where each application process is replicated by a set.

The ANTS project at the University of Rhode Island explores and evaluates the concept of
Active Nodal Task Seeking (ANTS) as éway to efficiently design and implement dependable,
high-performance, distributed computing [9]. By high-performance, we mean that the ANTS
concept is designed to explore the full computational potential a system can provide. There is
10 passive unit in an ANTS system, and therefore a true distributed system. Each computing
node has an equal role in contributing to the overall processing performance. There are
several advantages that can be pointed out immediately. First, there is no need for the load
balancing since the ANTS concept implies an always balanced work load for each computing
node. Second, there is no critical region in an ANTS system since all computing nodes are
active and that no passive unit is presented. Obviously, high-performance and dependability

can be achieved at the same time with the ANTS concept.

This paper summaries the ANTS concept and experimental implementation results. The
ANTS exhibits near linear speed-up curves in test runs. We also show that the impact of
the inclusion of fault-tolerant features is minimum. The fault-tolerant features added to
ANTS is a simple monitoring scheme similar to those in system level diagnosis. Depend on
the applications, the ANTS provide the flexibility to execute duplicated or triplicated tasks
when the situation should arise. All in all, sufficient evidences will be demonstrated that

ANTS can indeed achieve both high-performance and dependability at the same time.

2 An Overview of ANTS Distributed System

In an ANTS system, an idle computing ﬁode will seek out the information it needs about
pending, high priority work from partly prescribed, partly updated task tables, instead of
waiting for other computing nodes to send it a job to do. Naturally, predecessor/successor
conditions like those in a data flow architecture must be checked by the node. The advantage
of this concept is that a true distributed system is guaranteed. All programs, including
operating system, applications, and monitoring or diagnostic programs, can be executed
distributively. A failed computing node will not influence the system performance as long
as the n+1 redundancy policy is enforced, i.e. the number of available computing nodes is

always one greater than the number of required computing nodes.

2.1 General Attributes

There is no need for special hardware design to ensure the dependability of an ANTS system
except perhaps in its internode communication network. However, some extra work by the
programmer and/or an unconventional compiler is needed on a one-time basis, before the

compiled program can be executed on ANTS. Some other attributes of ANTS are as follows

[9]:

e On-line error checking is simple and straightforward. The two extreme failure modes:
fail-silent and fail-uncontrolled [6] are easily detected since the failed computing node

will not be actively seeking a new task.

e Fault tolerance can be attained without seriously degrading the system performance.

e There is no need for synchronization of computing nodes or programs. Since every
computing node is an active unit, the ANTS system is an asynchronous system. The
asynchronous nature of the operation also allows an easy implementation of recover

from failure process.

A high-performance distributed computing system is not necessarily a good real-time
system. Studies have shown that only 50% of the nodes, on average, in a distributed system
are busy at any given time {10]. This is a serious drawback if the system is to be used in
~ real-time applications. Clearly, the effort to guarantee a higher computing node utilization
can also help to enhance the success of real-time executions. In ANTS, the needed programs
will be first ;arefully partitioned and compiled such that each segment of sub-program (task)
contains only continuous executable codes with a fixed limitation on execution time. This
one-time effort is worthwhile since no run-time scheduling or task assignment will be needed

later.

2.2 High-Performance in a Scalable Environment

As described earlier, we define the term high-performance as the capability to fully explore
the potential computational power. This is a suitable definition for scalable environment
where computing node can be added to gain higher performance. ANTS can adapt itself
to accommodate the increase in the number of computing nodes without any hardware or
software modification. For the fault-tolerant version, the ANTS can add or delete computing
node during run-time without interfering with the current running jobs.

In an locally connected system such as several workstations interconnected via a local
area network, this attribute of ANTS is very useful. Additional workstations can be added to
obtain higher performance. Also, during run-time, some workstations that are heavily loaded
with local jobs can stop its ANTS operation for the collaborated jobs. These workstations

can easily re-enter the ANTS operation by again actively seeking out the next available tasks.

2.3 Fault-Tolerant Designs

The ANTS system has two levels of fault-tolerant designs: kernel level and task level. We
may roughly divide the failure modes of computing nodes and communication bus in the

following three categories:

1. control transfer errors,
2. communication errors, and
3. data manipulation errors.

Because there is no critical region in an ANTS system, the control transfer errors can -be
detected by monitoring. The monitoring technique implemented in the experimental system
uses two computing nodes to monitor the outgoing communication activities of a node. The
assignments of the monitoring and monitored nodes are dynamic. This monitoring technique
also covers some of the communication errors, while the rest of the communication errors are
handled by the communication protocol. These fault-tolerant techniques are implemented at
the ANTS kernel level in the form of ANTS Fault detection and Recovery Protocol (AFDRP).

The data manipulation errors are handled at the task level. Currently, the experimental
ANTS system support the option to execute duplicated tasks and triplicated tasks. Of
course other special types of error detection/correction methods, such as algorithm-based

fault tolerant (ABFT) for matrix operations [11], can be incorporated too.

3 The Experimental Implementation of ANTS

The first implementation of ANTS is carried out in a configuration as shown in Figure
1. The computing nodes in this case are Sun workstations, and the communication bus
is an Ethernet. Of course, ANTS can be implemented on any type of parallel processing
configurations. The choice of this particular system organization is due to the availability of
hardware facilities.

The ANTS kernel is built on top of the SUN OS and the TCP/IP {12] communication
protocol. A detailed view is shown in Figure 2. There are four major modules in the ANTS
kernel: System Manager (ANTS-SM), Fault Tolerance Monitor (AFDRP), Task Scheduler,

and Inter Node Communrnication Control.

3.1 AFDRP

At the ANTS kernel level, we implement a monitor scheme, ANTS Fault detection and
Recovery Protocol (AFDRP), that is similar to that proposed in [13]. Each ANT node

monitors its two neighboring nodes. Conversely, each ANT node is monitored by its two

neighboring nodes. Other checking functions such as periodic self-diagnosis, memory parity
checks, cyclic redundancy checks on inter node messages and hardware integrity checking
can also be selectively done depending on the available resources.

Once the concurrent error detection mechanism successfully detects a fault, it triggers
the recovery and restart (R&R) cycle. All the ANT nodes modify their System Information
Block (SIB) to reflect the removal of the node in question. 'More details about the SIB will
be discussed later. The next step in the R&R step counsists of re-enlistment. This involves
bringing back the computing nodes which has been previously exhibited faulty behavior but
has been check out complete in a self-diagnosis. Since intermittent and transient failures
occur more frequently during run-time [14], especially in modern VLSI-based systems {15],
there is no need to remove a component once a failure has been recorded. The record keeps
at each ANT node will indicate the number and frequency of failure history. If an ANT node
fails frequently, it will be removed from the system.

The monitoring scheme discussed above not only detect single isolated faulty nodes but
multiple faulty nodes as well. The main advantage of the above scheme is that the monitoring
of nodes and the fault detection process add no additional traffic over the communication
network. The protocols function by monitoring other system communication messages and
hence fault tolerance is achieved at the least communication expense. Detailed description

of the fault-tolerant features can be found in (16, 17].

3.2 Task Scheduler

The ANTS Task Scheduler distributes the tasks waiting to be executed among all the nodes
in the operational pool of computing nodes. The most important feature of the algorithm'is

the maintenance of a common coherent task list at all nodes.

3.2.1 Maintaining Coherency of Task Lists

Each node in the system has a data structure which reflects the state of all the tasks in the
system and the list is assumed to be identical at all nodes. This data structure comprises
of an ordered list of tasks that need to be executed. Tasks are added to this list whenever
they are invoked and are deleted when they have been taken for execution. Maintaining the
coherency of the task lists is done by passing messages among nodes. Three basic operations

are used to establish the task list coherency.

1. Append: Whenever a task originates, an APPEND message is broadcast over the net-
work. Along with the message, a data record containing all the information about the
task that is being added is also broadcast. Each node that receives the message adds

the data record to its respective task list.

2. Delete: Any time a node picks up a task for execution, it send out a DELETE message
along with a data record identifying the task that is being taken up for execution. As

before, every node on receiving this message deletes the task from its own task list.

3. Add First: This operation is similar to the APPEND, except that the task that is to
be added is put on top of the task list instead of appending to the end. This is useful

for inserting a high priority task and can be directed to a particular computing node.

3.2.2 Selection Policy

There are two selection policy implemented in the Task Scheduler. One type of the selection
policy is for applications that need to be executed on a first come first serve basis. In this
case, a Simple Selection Policy is used. The next task to be executed is the one that is on
top of the task list. So, whenever a node is free it grabs the top most task from the task list
if it is available for execution.

For applications that are data intensive, the execution of successive tasks with direct
predecessor-successor relationship on different nodes require that huge volumes of data be
transferred between the nodes that execute them. The communication cost involved could be
reduced to a great extent in such cases by executing these tasks on the same node. The data
that the tasks need are already stored locally and practically no inter-node commﬁnication
is required.

When a node is free to select a task from the task list, instead of just selecting the task
at the top of the list, a look ahead into the list is performed. Now, if another task which is
a direct successor of the just completed task is found, it is chosen for execution instead of
the one on top of the task list. This would result in considerable saving in terms of the data
traffic between nodes. The depth of look ahead will be determined by factors such as the
overhead involved, task queue size and other application specific issues. Note that a simple

selection policy is obtained when the look ahead depth is one.

3.2.3 Contention Resolution

The distributed task scheduler at each computing node select the next task to be executed
from its own copy of task list. Because of the communication delay, it is possible that
several'computing nodes may select the same task to be executed near simultaneously. If
such scenario occurs, the task scheduler will receive message from other computing nodes
stating the the task has been selected for execution at other nodes. As shown in Figure 3,
the timestamps indicating the time the task is selected are compared. The computing node
with a higher number in the timestamp will abandon the execution and will proceed to select
another task from the task list.

This simple mechanism has been shown to be effective during experimental runs. It is

also quite efficient since only very little overhead in comparing the timestamps is needed.

3.3 Inter Node Communication Control

The ANTS kernel Inter Node Communication facilities are built on top of the TCP Internet
Protocols [12] which is available in the Sun OS. The purpose of adding this kernel on top of
the available protocol is to customize the communication services available to best suit the
needs of the ANTS system. ‘

All the message handled by the INC conform to the predefined formats. Any message
that does not follow the known patterns results in the node that sourced the message being
put under test and diagnosis. The first byte of all messages indicates the type of message
it carries. Figure 4 shows the bit patterns of the first byte and the message it identifies.
Figures 5 and 6 show the message format for task scheduling and data transfer and for
AFDRP, respectively.

A salient feature of the network interface is that it’s network number of address is fully
dynaﬁic, in that the address can be modified by the ANTS Integrity Maintenance Protocol
at run-time. The network number consists of an 16-bit integer number which leads to a
maximum possible number of 65,536 nodes. A main reason for this arrangement of dynamic
ANTS network number is so that no critical region exists by pointing to a fixed number
as in a common local area network. The dynamic assignment of network number enables
us to freely remove or insert a computing node without seriously interfere with the system

performance.

3.4 ANTS System Manager

The ANTS system manager or ANTS-SM maintains a record called system information block
(SIB). The SIB consists of three major categories of records as shown in Figure 7. These
records are updated either due to interrupt-driven events, such as the system time, or due
to messages oriented from other nodes, such as task completion record.

In ANTS there is no need for highly synchronized clock mechanisms. The ANTS nodes
run in loose synchronization, the only need for a synchronized clock in ANTS arises when
timestamps have to be generated. The ANTS Task scheduler is designed such t;hat even for
the timestamps a high degree of synchronization is not required. Based on these requirements
the ANT-SM maintains a simple clock that counts in milliseconds. The clock is initialized
during start up and is periodicaplly checked at long intervals with neighboring nodes to trap
possible erroneous values (this is done as part of the concurrent error detection mechanism
at the kernel level). Other than this the precision of the system clocks is such that it does

not need to be adjusted for periods far exceeding the system uptime.

3.5 Debugging and System Diagnosis Features

The ANT-SM also provides a run time window display of the functioning of the system.
Some of the data that is displayed includes the first 10 tasks on the task list, the currently
execuﬂing task, the status of INC and the list of active nodes in the system. The display
basically provides continuous status information of the running system besides showing some
cumulative data such as the total traffic over the communication network and number of tasks
executed.

The other necessary system functions in the prototype are handled by the host operating
system the ANTS kernel is running on. In future versions it would be advantageous to
completely eliminate the host operating system interface to the hardware and implement

the required features taking into account the requirements of the ANTS system.

4 Experimental Results

The ANTS prototype was tested on Sun Sparc workstations running Sun OS. The ANTS
communication mechanism was layered on top of the Internet Protocols and the intercom-

munication network used was an Ethernet LAN running at 10 Mbits per second. The ANTS

8

code was written in C++ and compiled using the GNU C++ compiler. The test application
program was emulated using timing loops and an inter task data transfer size of 1.5KB was
assumed. Predecessor and successor relationships of tasks are either generated randomly or
are assumed to resemble that of the FFT computation. In addition, some randomly gener-
ated tasks with randomly generated data dependency relationships are also used. Due to
the limitation in the number of available nodes, the test runs were limited to a maximum
of nine nodes;. Tests were done for three different Task Slice Time factors and a comparison
of performance with and without fault tolerance was ‘also made to study the performance

trade off implications of using the ANTS Integrity Maintenance Protocols.

4.1 Fault Tolerant Features Verifications

The concurrent error detecting mechanism and other integrity maintenance protocols were
tested using simulated faults. The tests included cutting off the power supply to nodes or
to parts of the hardware, intentional triggering of faults by transmission of invalid data over
the bus and simulation of memory parity errors. Isolated and multiple faults were simulated
to fully test the correctness of the monitoring scheme. The observed results conformed to
the specified requirements in that each fault free node reaches an accurate diagnosis of the
fault conditions of the remaining nodes, without any restriction being placed on the number
of faulty nodes or fault patterns.

The fault tolerant mechanism always correctly reconfigured the network in all the test
cases. Under extremeé load conditions, it took the ANTS system (with 9 nodes) a maximum
time of one minute to reconfigure itself to a stable state. Under nominal conditions of load
and faults the mean reconfiguration time was about 10 seconds. The reconfiguration time is
the time interval between the occurring of a fault and the time the network becomes fully
operational again. The reconfiguration time is related to the number of faults occurring at

the same time and to the communication network latency.

4.2 ANTS Performance without Fault Tolerant Features

Figure 8 shows the performance figures obtained from the test results. During these test runs,
the AFDRP or the Fault Tolerance Monitor is disabled. The modulation in programming
ensures that these results are obtained with no interference from the disabled modules. The

following inferences can be drawn from the results:

First, as is to be expected the speed up factor is not linear. The speedup obtained
gradually decreases with the addition of more nodes. The decrease in speed up is more
pronounced with an increase in the number of nodes beyond 6. This effect is due to the traffic
bottleneck imposed by the single communication channel. Addition of more communication
channels or an increase in bandwidth of the communication media is necessary to achieve a
better performance with more nodes in the system.

Another noticeable aspect of the performance figures is the higher linearity in speed up
with higher Time Slice factors, i.e., task execution time. This is evidently due to the fact
that less overhead is involved with larger task fragments. The time slice factor will however
have to be limited to a reasonable value to facilitate faster trapping of faulty nodes If the time
slice factor were to be too large, a faulty node could unrecoverably damage the cooperative
processing environment of the ANT system.

A third prominent feature is that with a large number of nodes in the system the speed up
tapers of to an almost constant value. This value is a function of the total available bandwidth
of the communication medium. This compares well with other distributed computing systems
where beyond a certain point the speed up curve inverts and results in worsening performance
[18]. This is due to the fact that with more nodes there are more messages that contend.for
the communication medium. In ANTS the communication traffic is not adversely affected
by the number of nodes in the system.

We also observe that the average communication delay is about 200 to 250ms. There is
a strong relationship between the average task execution time, the average communication
delay, and the speed up factor. Of course, when a high speed network is available, a shorter

task execution time can be used.

4.3 ANTS Performance with Built-In Fault Tolerant Features

We then record the performance figures of ANTS with AFDRP enabled. The test run
results are shown in Figure 9. Figure 9 clearly shows that one of the major design goals
has been achieved. The ANTS is designed to exploit the inherent fault tolerant features of
the distributed system. We expect that a successful implementation of ANTS should have
a minimum impact on the system performance. Test runs yielded a figure of 5% for the
performance degradation due to the addition of fault tolerance. We believe that this low

figure is a strong evidence to support that the inherent fault tolerance has been well utilized.

10

We have shown previously in [9] that an ANTS system can achieve an extremely long
MTTF. Part of this MTTF improvement is due to the re-enlistment of ANT nodes with
transient type failures. We note that the ratio of transient faults to all faults depends to
a large extent on environmental conditions. In a documented case [5], the transient faults
account for 20% to 33% in low earth orbit conditions. This clearly brings out the effectiveness
of the recovery process of the ANTS fault tolerant mechanism. The penalty paid for obtaining
such an improvement in MTTF is a minimal trade-off in performance, as shown in Fig 10.
The loss of performance is a function of the number of nodes in the system and the mean
performance degradation with 4 and 8 nodes was 2% and 5%, respectively. This is relatively
small c_ompared to the magnitude by which the recovery and re-enlistment process extends

the useful life of the system.

5 Conclusions

We have presented in this paper a summary of the ANTS concept and some experimental
results. We clearly show that the major design goal has been achieved in that the high-
performance and dependability can be achieved at the same time. Of course, the fault
tolerant features discussed here do not include the cost for detecting or correcting data ma-
nipulation errors. To that end, the cost of checking may be much higher than reported here,
since task duplication, triplication, or alike must be used. However, we also should point out
that no all application require such a restricted data mani;ﬁulation error detection/correction.
In some cases, reasonableness checking as suggested in [9] can be used. Our initial design
goal has been aimed at the achieving of an extfemely long MTTF [9]. The results presented

here show that this goal can be achieved as predicted.

References

[1) M. J. Tacoponi and D. K. Vail, “The fault tolerance approach of the advanced architec-
" ture on-board processor,” in Proc. 19th Int’l Symp. Fault-Tolerant Comput., pp. 6-12,
June 1989.

[2] M. J. Iacoponi and S. F. McDonald, “Distributed reconfiguration and recovery in the
advanced architecture on-board processor,” in Proc. 21st Int’l Symp. Fault-Tolerant
Comput., pp. 436-443, June 1991.

11

[3] F. Cristian, B. Dancey, and J. Dehn, “Fault-tolerant in the advanced automation sys-
tem,” in Proc. 20th Int’l Symp. Fault-Tolerant Computing, pp. 6-17, June 1990.

[4] T. R. Dilenno, D. A. Yaskin, and J. H. Barton, “Fault-tolerant testing in the advanced
automation system,” in Proc. 21st Int’l Symp. Fault-Tolerant Comput., pp. 18-25, June
1991.

[5] T.Takano, T. Yamada, K. Shutoh, and N. Kanekawa, “Fault-tolerant experiments of the
"Hiten” onboard space computer,” in Proc. 21st Int’l Symp. Fault-Tolerant Comput.,
pp. 26-33, June 1991.

[6] M. Chereque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron, “Active replication in
Delta-4,” in Proc. 22nd Int’l. Symp. Fault-Tolerant Comput., pp. 28-37, July 1992.

[7] E. N. Elnozahy and W. Zwaenepoel, “Replicated distributed processes in Manetho,” in
Proc. 22nd Int’l Symp. Fault-Tolerant Computing, pp. 18-27, July 1992.

[8] M. Linvy and M. Melman, “Load balancing in homogéneous broadcasting distributed
systems,” in Proc. ACM Comput. Network Perf. Symp., 1982.

[9] J. C. Lo, D. W. Tufts, and J. W. Cooley, “Active Nodal Task Seeking (ANTS): an
approach to high-performance, ultra-dependable computing,” to appear in IEEE Trans.
Aerospace and Electronic Syst., 1995.

[10] Z. M. Wojcik and B. E. Wojcik, “Rough grammar for efficient and fault-tolerant com-
puting on a distributed system,” IEEE Trans. Software Eng., vol. 17, pp. 652-668, July
1991. :

[11] K. H. Huang and J. A. Abraham, “Algorithm-based fault-tolerance for matrix opera-
tions,” IEEE Trans. Comput., vol. C-33, pp. 518-528, June 1984.

[12] D. E. Comer and D. L. Stevens, Internetworking with TCP/IP, vol. 1. Prentice-Hall,
NJ, 1988.

[13] R. P. Bianchini and R. W. Buskens, “Implementation of on-line distributed system-level
diagnosis theory,” IEEE Trans. Comput., vol. 41, pp. 616-626, May 1992.

[14] J. R. Sklaroff, “Redundancy management technique for space shuttle computers,” IBM
I Res. Develop., pp. 20-27, January 1976. .

[15] Y. Savaria, N. C. Rumin, J. F. Hayes, and V. K. Agarwal, “Soft-error filtering: A
solution to the reliability problem of future VLSI digital circuits,” Proc. IEEE, vol. 74,
pp. 669683, May 1984.

[16] P. Dominic-Savio, Design of the ANTS Kernel to Implement a Fault Tolerant Dsitributed
Computing System. M.S. Thesis, University of Rhode Island, 1994.

[17] P. Dominic-Savio, J. C. Lo, and D. W. Tufts, “Fault tolerant features and experiments
of ANTS distributed real-time system,” in submitted to FTCS-25, 1995.

[18] W. W. Chu, L. J. Holloway, M. T. Lan, and K. Efe, “Task allocation in distributed data
processing,” IEEE Computer, pp. 57-69, November 1980.

12

NODE 1J [T\IODE 2 voe NODE n

!

< COMMUNICATION BUS >

Figure 1: Architecture of the ANTS experimental system.

SYSTEM MANAGER | sysTEM INFORMATION
BLOCK
APPLICATION
TASK
SPACE FREE MEMORY
TASK SCHEDULER FAULT TOLERANCE
MONITOR
TASK ST FAULT HISTORY
RECOVERY CONTROL
INTER NODE COMMUNICATION
| COMMUNICATION
i MEDIA PARAMETERS

< COMMUNICATION BUS 4>

Figure 2: The ANTS kernel.

13

r Initialize node I

Synem Manager:
eceive incoming
message

Task available
in Task List

Message is
"Task Taken®

Get task from
Task List
Taken task
same as currently
executing task
Broadcast message
"Task Taken"
Resolve contention
using fimestamps

Store process id
of task in SIB

Local node
timestamp
newer

ExecuteTask [-~ ~~-=="

—— Flow of Control prTmmmemsmesTessssmemoeos :
Action ' Further processi re—
-=<----= Signol , P no

Figure 3: Contention Resolution in ANTS Task Scheduler.

New Task 00001010
Task Scheduler
Delete Task 00010100
Request for Data ' 00011110
System Manager _ : ~ :
Data : 00100101
Request for monitor report 00101000
FauitTolerance) vy nitor Report 00110010
Monitor
Remove Nodes 00111100
MSb LSb

Figure 4: Pre-defined bit patterns for the first byte of an ANTS message.

14

1 8 2 2 2

Message Time Source Dest Task
Tupe Stamp Node Node id.

a. Format of <Delete from list> message

1 8 2 2 2 104 —>
Message Time Source Dest Task Task
Tupe Stamp Node Node id. info

b. <Add to list> message.

1 2 2 4
Message Source Dest Data
Tupe Node Node id
c. Reuest for data.
1 2 2 4 4
Message Source Dest Data Size of Voriot::e
Tupe Node Node id Data nggct

d. Reply: requested data.

-~ Data width in bytes —>

Figure 5: Message formats for Task Scheduler and data transfer.

1 8 2 2
Message Time Source Nr?ge
Tupe Stamp Node utester

a. Request for a report on the Node under test.

1 8 2 2 1
Node
Message Time Source R
Tupe Stamp Node utenfjster eport

b. Reply: report of the Node under test.

1 8 2 2 64
Message Time Source N:ge List of nodes
Tupe Stamp Node ried to be removed

¢. Removal of nodes message.

-— Data width in bytes ——>

Figure 6: Message formats for AFDRP.

15

ANTS NODE NAME
ANTS ADDRESS
LIST OF ACTIVE ANTS NODES
MAXIMUM ALLOWABLE NODES IN THE SYSTEM
NODE TIMEOUT FACTOR
BUS TIMEOUT FACTOR
SYSTEM TIME
SYSTEM UPTIME
TASK COMPLETION RECORD
PROCESS ID OF CURRENT JOB
MAXIMUM DATA BUFFER SIZE
DATA AND NODES THEY ARE AVAILABLE IN
TASK EXECUTION HISTORY

FAULT HISTORY

a. The System Manager Information Block

TASK LIST
COMMUNICATION PORT NUMBERS
L |)

b. Task Scheduler
information block

PORT NUMBERS

PROTOCOL NUMBERS

MAXIMUM DATA TRANSFER SIZE
DELIVERY TIME STATISTICS
PACKET LOSS STATISTICS

¢. The INC information block

Figure 7: The System Information Block.

16

Speed up

10

e a
Execution time of single task:
---------- 100 ms e S0ms
----- 250 ms

L 800 ms D

Number of nodes

Figure 8: Speed up factors of ANTS with fault tolerant features disabled.

17

n “'Q

10
Execution time of single task: 800ms

Performance with AFDRP disabled
8 r | ----- Performance with AFDRP enabled

Speed up

Number of nodes

Figure 9: Trade-off in ANTS performance with fault tolerance features.

18

